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Abstract
New exactly integrable quantum spin-1 chains are derived. These new quantum
Hamiltonians, like the XXZ chain, have a free parameter (anisotropy) and
commute with the z-component of the total magnetization. The eigenvalues
and eigenvectors are obtained directly by imposing a generalized coordinate
Bethe ansatz. The derived Bethe ansatz equations have an unusual form and
the associated R-matrix, has a dependence with the spectral parameter that is
not of difference form, like the Hubbard quantum chain.

PACS numbers: 75.10.Lp, 74.20.-z, 05.50.+q

FCA dedicates this work to the memory of Rinat Z Bariev, deceased 17 May
2001.

The anisotropicS = 1
2 Heisenberg model, or XXZ chain, is one of the most studied quantum spin

system in statistical mechanics. Since its exact solution, obtained by Yang and Yang [1], using
directly the coordinate Bethe ansatz, this model has been considered as the classical example
of the success of the Bethe ansatz. The advent of the quantum inverse scattering method [2,3],
providing a powerful mathematical framework to the Bethe ansatz, enabled the discovery of
several higher spin (S > 1) generalizations of the XXZ chain, preserving its exact integrability.
The simplest of these generalizations are the spin-1 models having the z-component of the total
magnetization as a good quantum number (U(1) symmetry). The models discovered on this
class are known in the literature as the Fateev–Zamolodchikov model [4], the Izergin–Korepin
model [5] and the supersymmetric OSP(1|2) model [6]. The integrability of these models is a
consequence of the existence of an associated R-matrix satisfying the Yang–Baxter equation.
In all the above models the associatedR-matrix are regular, having a dependence on the spectral
parameter of difference type. Recently an appropriate generalization of the coordinate Bethe
ansatz [7,8] was discovered that allowed a direct solution for all the above models in an unified
form. An earlier solution for the Izergin–Korepin model through the coordinate Bethe ansatz
was obtained by Batchelor et al [9].
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In this letter, directly using the coordinate Bethe ansatz we are going to show the existence
of two new U(1) symmetric spin-1 quantum chains. We start with a general spin-1 model with
U(1) symmetry and nearest neighbour interactions. Instead of writing this general Hamiltonian
in terms of spin-1 Pauli matrices it is more convenient to write it in terms of the Weyl matrices
El,m (l, m = 0, 1, 2), with i, j elements El,m)i,j = δl,j δm,j . We suppose that at each lattice
site we may have zero particles (Sz = −1), one particle (Sz = 0) or two particles (Sz = 1).
The general Hamiltonian we consider, that conserves the number of particles, is given by
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∑
j
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(1)

where t1, t2, t3, tp are the non-diagonal hopping couplings, governing the spin motion and
u, v11, v12, v21 and v22 are the static potential energies. The couplings ti (i = 1, 2, 3) and tp
are the hopping terms for the single particle and pair of particles motion, respectively, while
the two-, three- and four-particle static interactions are given by u, v12, v21, v22. Certainly the
Hamiltonian (1) is not integrable for an arbitrary choice of parameters. We want to find the
constraints those parameters should satisfy in order the Hamiltonian (1) be solvable by the
coordinate Bethe ansatz technique.

We consider the Hamiltonian (1) in a periodic lattice of L sites. This implies that besides
the number of particles n (0, 1, 2, . . .), or z-magnetization in the spin language, the total
momentum p = 2π

L
l (l = 0, 1, . . . , L − 1) is also a good quantum number. An arbitrary

wavefunction |φn〉, in the sector of n particles, is given by a linear combination of vectors
|x1, x2, . . . , xn〉, corresponding to the configurations of n particles

|φn〉 =
∗∑

1�x1�x2�···�xn�L

�(x1, . . . , xn)|x1, . . . , xn〉 (2)

where the symbol (*) means that at most two coordinates may coincide at a given site. The
ansatz that was applied with success in the known solvable cases of Hamiltonian (1) asserts that
the amplitudes �(x1, . . . , x2) in (2) should have the following form, if there exist no double
occupation in any site:

�(x1, . . . , xn) =
∑
P

A1...1
P1...Pn

exp

(
i

n∑
j=1

kPj
xj

)
(3)

where P = (P1, . . . , Pn) is the permutation of 1, 2, . . . , n and kj (j = 1, . . . , n) are unknown
quasiparticle momenta. The n superscripts 1 in the amplitude indicate we have only single
occupation of particles (no particles with spin Sz = 1). In the case where the lth and (l + 1)th
particles occupy the same position, the ansatz (3) is replaced by

�(x1, . . . , xl, xl + 1, . . . , xn) =
∑
P

A1...11...1
P1...PlPl+1...Pn

exp

(
i

n∑
j=1

kPj
xj

)
(4)

where the bar at the lth and (l + 1)th positions of the superscript indicates the pair’s position.
The general case with many isolated particles and pairs follows from equations (3) and (4).

A direct substitution of the ansatz (3) for the amplitudes associated with the configurations
where all the particles are isolated and not at nearest neighbour sites (xi+1 > xi + 1, i =
1, . . . , L), fix the dependence of the eigenenergies on the unknown quasimomenta {ki, i =
1, . . . , n}, namely

E = 2
n∑

j=1

cos kj . (5)



Letter to the Editor L469

The equations for the amplitudes coming from the configurations where we have two particles
located at consecutive sites, or the two particles are at the same site, forming a pair, are given
by

SPjPj+1A
...11...
...PjPj+1...

+ SPj+1Pj
A...11...

...Pj+1Pj ...
= 0 (6)

and
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...11...
...PjPj+1...
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...11...
...PjPj+1...

(7)

respectively, where

S12 = C0(y1, y2)D(y1, y2) + y2[C1(y1, y2)C2(y1, y2) − v11C0(y1, y2)] (8)

and
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1y

2
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1y2 − y1y
2
2

C1(y1, y2) = t1 + t2y1y2 C2(y1, y2) = t2 + t1y1y2

D(y1, y2) = 1 + y1y2 N(y1, y2) = D(y1, y2) − y2v11

(9)

and to simplify the notation we denote yj ≡ yPj
≡ exp (ikPj

). In contrast with the XXZ model
the conditions (6) and (7) are not enough to prove the Bethe ansatz works. We have also to
consider the eigenvalue equations in the case we have n = 3 and 4 particles at consecutive
sites. For n = 3 particles, after substitution of (7), we obtain∑
P
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= 0∑
P

{d2(y1, y2, y3)C1(y1, y2)N(y2, y3) + y3[t2C1(y1, y2) − t3N(y1, y2)]
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111
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(10)

while for n = 4∑
P

{[tp(1 + y1y2y3y4) − (v22 − v11 − u)y3y4]N(y1, y2)N(y3, y4) + t1y2y3y4

×C1(y1, y2)N(y3, y4) + t2y4N(y1, y2)C1(y3, y4)}C1(y1, y3)C1(y1, y4)
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1111
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= 0 (11)

where

d1(y1, y2, y3) = 1 + tpy1y2y3 − (v21 − u/2)y3

d2(y1, y2, y3) = tp + y1y2y3 − (v12 − u/2)y2y3.
(12)

Following Baxter [10] the solution, if it exists, of equations (6)–(11), is given in terms
of SP1P2 . Apart of an overall multiplicative constant, that can be absorbed in the eigenvectors
normalization, is given by

A11
P1P2

= εP SP2P1 A111
P1P2P3

= εP SP3P2SP3P1SP2P1 (13)

A1111
P1P2P3P4

= εP SP4P3SP4P2SP4P1SP3P2SP3P1SP2P1 (14)

where SPiPj
is given by (8) and εP = +1 or −1 depending if the permutation is even or odd.

Using relations (13) in (10) we obtain two complicated polynomial in the unknown variables
y1, y2 and y3, where the coefficients are functions of the coupling constants defining the general
Hamiltonian (1). In order our Bethe ansatz works we should have all the coefficients of these
polynomial identically zero, which will be true only for special values of the coupling constants
in (1). Guessed by numerical calculations we were able to find besides the known solution
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of Fateev–Zamolodchikov [4], Izergin–Korepin [5], OSP(1|2) model [6], two new solution
(ε = +1, −1), where the couplings appearing in (1) are given by

t3 = ε t1 =
√
t2
p − 1 exp

(
i
π

3

)
t2 = −ε

√
t2
p − 1 exp

(
−i

π

3

)

u = εtp + (2 + ε)t−1
p v11 = −εtp v12 = 2 − ε

2
t−1
p − i

√
3

2
εtp

v21 = 2 − ε

2
t−1
p + i

√
3

2
εtp v22 = (2 − ε)t−1

p

(15)

and tp is a free complex parameter. In both cases (ε = ±1) and equation (11) is satisfied
by (14) as long as v22 takes the above value. The above results can now be generalized for
arbitrary number n > 4 of particles, but since there is no new configuration, it is simple to
convince ourselves that the Bethe ansatz works in general.

The Bethe ansatz equations, that fix the quasimomenta kj , follows from the periodic
boundary condition, in a standard procedure [10], and are given by

expikjL = (−)n−1
n∏

l=1

exp(−iθ(kj , kl)) j = 1, 2, . . . , n (16)

where

exp(−iθ(kj , kl)) = Sj,l

Sl,j

(17)

and Sl,j are given by (8). The solutions {kj , j = 1, . . . , n} when inserted into (5) give the
eigenenergies.

An important step towards the solution of (16) in the thermodynamic limit is achieved
by introducing new suitable variables λj = λ(kj ), that makes the phase shifts θ(kj , kl) =
f (λj − λl) of difference form. Following [11] these new variables are found and the Bethe
ansatz equations take the simple form

eikjL = −
n∏

l=1

sinh(λj − λl − iµ)

sinh(λj − λl + iµ)
j = 1, . . . , n (18)

where for the case ε = +1,

eikj =
t−1
p sinh λj ± i

√
(4 − t−2

p ) sinh2 λj + 3

2 sinh(λj + iπ3 )
µ = 2π/3 (19)

and for the case ε = −1

eikj =
t−1
p

√
3 sinh λj ± i

√
(4 − 3t−2

p ) sinh2 λj + 1

2 sinh(λj + iπ6 )
µ = π/3. (20)

In both cases the energy and momentum are given by

E =
n∑

j=1

2 cos(kj ) P =
n∑

j=1

kj . (21)

As we see form (1) and (15) the Hamiltonian of these new models, although having a real
trace for real values of tp, are not Hermitean. However, numerical results obtained by brute
force diagonalization on small lattices show us that the low lying energies in the eigenspectra
are all real, appearing as complex conjugated pairs of energies only in the upper part of the
eigenspectra. This behaviour is quite similar to that appearing in the exact integrable spin-
1 biquadratic model in a periodic lattice [12]. It is important to notice that the Bethe ansatz
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equations (18)–(20) are quite distinct from those of the known one-step exact integrable models.
An extensive numerical analysis of these equations, for finite chains, is necessary in order to
obtain the topology of its roots (particles, anti-particles, strings, etc). It is our plan to consider
this problem and to present the phase diagram of these models in an extended version of this
letter.

Finally, it is important to stress that although the other known exact integrable spin-1
models were derived by using the R-matrix approach, our new models merged from a direct
application of the coordinate Bethe ansatz. A natural question that arises concerns the existence
of an associated R-matrix for these models. According to the Reshetikihim criterion [3] any
exact integrable Hamiltonian H = ∑

i Hi,i+1, with an associated R-matrix of difference form,
should satisfy

[Hi,i+1 + Hi+1,i+2, [Hi,i+1, Hi+1,i+2]] = Wi,i+1 − Wi+1,i+2 (22)

where Wi,j are arbitrary matrices associated with the sites i, j . We verified that our
Hamiltonians (15) do not satisfy the above criterion and consequently they also do not have
an associated R-matrix of difference form. This situation is similar to that of the Hubbard
model [13] and the derivation of the associated R-matrix for the new models presented in this
letter is an interesting open problem.

It is a pleasure to acknowledge profitable discussions with A A Belavin and A Lima-Santos.
This work was supported in part by CNPq (Brazil) and by the Russian Foundation of
Fundamental Investigation (grant 01-02-16644).
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